PLANETARY HABITABILITY DURING THE POST-MAIN-SEQUENCE Ramses Ramirez^{1,2}, Lisa Kaltenegger¹ ¹ Carl Sagan Institute, Department of Astronomy, Cornell University ² Center of Astrophysics and Planetary Science Figure 1: Size comparison between our current Sun, the orbits of the inner planets, and the future red giant Sun - As a star ages, it exhausts the hydrogen in its core - After this hydrogen is exhausted completely, it becomes a red giant and enters the post-main-sequence (post-MS) - During the post-MS, red giants get larger, and the habitable zone (HZ), the circular region around a star in which liquid water could exist on a planetary surface, moves outward as well - In this work, we modeled where the HZ is for red giants and assess the resultant effects on planetary atmospheres and orbits (Ramirez and Kaltenegger, 2016) ## EVOLUTION OF HABITABLE ZONE AND ORBITS DURING POST-MAIN-SEQUENCE - -The HZ will eventually move so far outward that frozen worlds in the outer regions of the system melt, potentially unveiling hidden life - Planets around small stars can reside in this post-MS HZ for up to 9 billion years, enough time for life to start up again - As the star continues to age, it loses mass and strong stellar winds are ejected, eroding planetary atmospheres and pushing planets out to farther distances Figure 2: Shows the evolution of the post-MS HZ as the Sun (left) and red dwarf star (right) age ## DIRECT IMAGING OF PLANETS DISTANT FROM THEIR STARS Figure 3: Comparison of orbits of the directly-imaged exoplanets HR 8799 b-e (yellow dots) with the radius (left green line) and post-MS HZ distance of the host star (white lines). The runaway greenhouse (arrow) is triggered inside the inner edge of the HZ. - HR8799 (spectral class: A5) is ~ 30 million years old and is nearly 5 times as bright as our Sun - The planets (e b) orbit ~ 14 70 AU from their parent star - Although HR8799 is a young star (not a red giant) it proves that planets do orbit in the farthest reaches of solar systems and can be detected ## REFERENCES Ramirez, R. and Kaltenegger, L., (2016). *Habitable zones* around post-main-sequence stars. ApJ, 823, 6, 14 pp